Cytochrome p450 steroid hormone biosynthesis

The mechanisms of variable response to tamoxifen have been the subject of much scrutiny in the published literature. Early studies attempting to link a clinical response to tamoxifen therapy with plasma tamoxifen concentrations reported no statistically significant differences in outcomes between women who received 20 mg of tamoxifen daily and those who received 40 mg of tamoxifen daily, even though women in the 40 mg tamoxifen group had higher plasma tamoxifen concentrations than those in the 20 mg tamoxifen group. These results have been reported as evidence that plasma tamoxifen concentration is not a predictor of clinical outcome.  Because there is evidence that tamoxifen is converted to anti-estrogenic metabolites, one hypothesis is that altered patterns of metabolism of tamoxifen might contribute to inter-individual variability in effects (Jin et al, 2005).  Plasma concentrations of the active tamoxifen metabolite endoxifen are associated with the cytochrome P450 (CYP) 2D6 genotype.

Cells of the zona fasciculata and zona reticularis lack aldosterone synthase (CYP11B2) that converts corticosterone to aldosterone, and thus these tissues produce only the weak mineralocorticoid corticosterone. However, both these zones do contain the CYP17A1 missing in zona glomerulosa and thus produce the major glucocorticoid, cortisol. Zona fasciculata and zona reticularis cells also contain CYP17A1, whose 17,20-lyase activity is responsible for producing the androgens, dehydroepiandosterone (DHEA) and androstenedione. Thus, fasciculata and reticularis cells can make corticosteroids and the adrenal androgens, but not aldosterone.

Cytochrome p450 steroid hormone biosynthesis

cytochrome p450 steroid hormone biosynthesis

Media:

cytochrome p450 steroid hormone biosynthesiscytochrome p450 steroid hormone biosynthesiscytochrome p450 steroid hormone biosynthesiscytochrome p450 steroid hormone biosynthesiscytochrome p450 steroid hormone biosynthesis

http://buy-steroids.org